Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR

نویسندگان

  • Xue-Feng Xu
  • Ying Lv
  • Wei-Zhong Gu
  • Li-Li Tang
  • Jia-Kai Wei
  • Li-Yan Zhang
  • Li-Zhong Du
چکیده

BACKGROUND Accumulating evidence reveals that intrauterine growth retardation (IUGR) can cause varying degrees of pulmonary arterial hypertension (PAH) later in life. Moreover, epigenetics plays an important role in the fetal origin of adult disease. The goal of this study was to investigate the role of epigenetics in the development of PAH following IUGR. METHODS The IUGR rats were established by maternal undernutrition during pregnancy. Pulmonary vascular endothelial cells (PVEC) were isolated from the rat lungs by magnetic-activated cell sorting (MACS). We investigated epigenetic regulation of the endothelin-1 (ET-1) gene in PVEC of 1-day and 6-week IUGR rats, and response of IUGR rats to hypoxia. RESULTS The maternal nutrient restriction increased the histone acetylation and hypoxia inducible factor-1α (HIF-1α) binding levels in the ET-1 gene promoter of PVEC in IUGR newborn rats, and continued up to 6 weeks after birth. These epigenetic changes could result in an IUGR rat being highly sensitive to hypoxia later in life, causing more significant PAH or pulmonary vascular remodeling. CONCLUSIONS These findings suggest that epigenetics is closely associated with the development of hypoxic PAH following IUGR, further providing a new insight for improved prevention and treatment of IUGR-related PAH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic changes in peripheral leucocytes as biomarkers in intrauterine growth retardation rat

Epigenetics plays an important role in the fetal origins of adult disease. Intrauterine growth retardation (IUGR) can cause increased histone acetylation of the endothelin-1 (ET-1) gene from pulmonary vascular endothelial cells or the whole lung tissue and persist into later life, likely resulting in increased risk of pulmonary hypertension or asthma later in life. However, little is known rega...

متن کامل

Epigenetics of hyper-responsiveness to allergen challenge following intrauterine growth retardation rat

BACKGROUND Epidemiological studies have revealed that intrauterine growth retardation (IUGR) or low birth weight is linked to the later development of asthma. Epigenetic regulatory mechanisms play an important role in the fetal origins of adult disease. However, little is known regarding the correlation between epigenetic regulation and the development of asthma following IUGR. METHODS An IUG...

متن کامل

Epigenetic Regulation and Its Therapeutic Potential in Pulmonary Hypertension

Recent advances in epigenetics have made a tremendous impact on our knowledge of biological phenomena and the environmental stressors on complex diseases. Understanding the mechanism of epigenetic reprogramming during the occurrence of pulmonary hypertension (PH) is important for advanced studies and clinical therapy. In this article, we review the discovery of novel epigenetic mechanisms assoc...

متن کامل

Tyrosine phosphorylation of Kv1.5 is upregulated in intrauterine growth retardation rats with exaggerated pulmonary hypertension

Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in thi...

متن کامل

Decreased Kv1.5 expression in intrauterine growth retardation rats with exaggerated pulmonary hypertension.

Chronic hypoxia pulmonary hypertension (CH-PHT) in adulthood is likely to be of fetal origin following intrauterine growth retardation (IUGR). Oxygen (O₂)-sensitive voltage-gated potassium channels (Kv channels) in resistance pulmonary artery smooth muscle cells (PASMCs) play an important role in scaling pulmonary artery (PA) pressure. Expression and functional changes of Kv channels are determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013